skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shixiao Liang and Christopher Tunnell"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Dual-phase liquid xenon time projection chambers (LXeTPC) have been successfully applied in rare event searches in astroparticle physics because of their ability to reach low backgrounds and detect small scintillation signals with photosensors. Accurate modeling of optical properties is essential for reconstructing particle interactions within these detectors as well as for developing data selection criteria. This is commonly achieved with discretized maps derived from Monte Carlo simulation or approximated with empirical analytical models. In this work, we employ a novel approach to this using a neural network trained with a Poisson log-likelihood ratio loss to model the mapping from light source location to the expected light intensity for each photosensor. We demonstrate its effectiveness by integrating it into a likelihood fitter for position reconstruction, simultaneously providing insights into the uncertainty associated with the reconstructed position. 
    more » « less